Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Clin Cancer Res ; 30(10): 2121-2139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38416404

RESUMEN

PURPOSE: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed. EXPERIMENTAL DESIGN: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models. To refine ATM LOF as a predictive biomarker, we performed a comprehensive pan-cancer analysis of ATM variants in patient tumors and then assessed the ATM variant-to-protein relationship. Finally, we assessed a novel ATM LOF biomarker approach in retrospective clinical data sets of patients treated with platinum-based chemotherapy or ATR inhibition. RESULTS: ART0380 had potent, selective antitumor activity in a range of preclinical cancer models with differing degrees of ATM LOF. Pan-cancer analysis identified 10,609 ATM variants in 8,587 patient tumors. Cancer lineage-specific differences were seen in the prevalence of deleterious (Tier 1) versus unknown/benign (Tier 2) variants, selective pressure for loss of heterozygosity, and concordance between a deleterious variant and ATM loss of protein (LOP). A novel ATM LOF biomarker approach that accounts for variant classification, relationship to ATM LOP, and tissue-specific penetrance significantly enriched for patients who benefited from platinum-based chemotherapy or ATR inhibition. CONCLUSIONS: These data help to better define ATM LOF across tumor types in order to optimize patient selection and improve molecularly targeted therapeutic approaches for patients with ATM LOF cancers.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Neoplasias , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Animales , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones , Mutación con Pérdida de Función , Línea Celular Tumoral , Biomarcadores de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Especificidad de Órganos/genética
2.
Nat Commun ; 14(1): 2194, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069167

RESUMEN

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Éteres Fosfolípidos/metabolismo , Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/metabolismo , Homeostasis
3.
ACS Pharmacol Transl Sci ; 6(2): 245-252, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36798479

RESUMEN

Metabolically labile prodrugs can experience stark differences in catabolism incurred by the chosen route of administration. This is especially true for phosph(on)ate prodrugs, in which successive promoiety removal transforms a lipophilic molecule into increasingly polar compounds. We previously described a phosphonate inhibitor of enolase (HEX) and its bis-pivaloyloxymethyl ester prodrug (POMHEX) capable of eliciting strong tumor regression in a murine model of enolase 1 (ENO1)-deleted glioblastoma following parenteral administration. Here, we characterize the pharmacokinetics and pharmacodynamics of these enolase inhibitors in vitro and in vivo after oral and parenteral administration. In support of the historical function of lipophilic prodrugs, the bis-POM prodrug significantly improves cell permeability of and rapid hydrolysis to the parent phosphonate, resulting in rapid intracellular loading of peripheral blood mononuclear cells in vitro and in vivo. We observe the influence of intracellular trapping in vivo on divergent pharmacokinetic profiles of POMHEX and its metabolites after oral and parenteral administration. This is a clear demonstration of the tissue reservoir effect hypothesized to explain phosph(on)ate prodrug pharmacokinetics but has heretofore not been explicitly demonstrated.

4.
bioRxiv ; 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36747713

RESUMEN

Efforts to improve the anti-tumor response to KRASG12C targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRASG12C inhibitor (KRASG12Ci) to those induced by KRASG12Ci alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRASG12Ci induces an anti-tumor response stronger than that observed with KRASG12Ci alone and comparable to those by the other combinations. This enhanced anti-tumor response is associated with a stronger and extended suppression of RAS-MAPK signaling. Importantly, BI-3406 plus KRASG12Ci treatment delays the emergence of acquired adagrasib resistance in both CRC and lung cancer models and is associated with re-establishment of anti-proliferative activity in KRASG12Ci-resistant CRC models. Our findings position KRASG12C plus SOS1 inhibition therapy as a promising strategy for treating both KRASG12C-mutated tumors as well as for addressing acquired resistance to KRASG12Ci.

5.
Nat Med ; 29(1): 115-126, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36658425

RESUMEN

Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759. The PK, PD, and preliminary antitumor activities of IACS-010759 in patients were also evaluated as secondary endpoints in both clinical trials. IACS-010759 had a narrow therapeutic index with emergent dose-limiting toxicities, including elevated blood lactate and neurotoxicity, which obstructed efforts to maintain target exposure. Consequently no RP2D was established, only modest target inhibition and limited antitumor activity were observed at tolerated doses, and both trials were discontinued. Reverse translational studies in mice demonstrated that IACS-010759 induced behavioral and physiological changes indicative of peripheral neuropathy, which were minimized with the coadministration of a histone deacetylase 6 inhibitor. Additional studies are needed to elucidate the association between OXPHOS inhibition and neurotoxicity, and caution is warranted in the continued development of complex I inhibitors as antitumor agents.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Neoplasias , Animales , Ratones , Antineoplásicos/efectos adversos , Inhibidores de Histona Desacetilasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Neoplasias/patología , Fosforilación Oxidativa , Humanos
6.
Mol Cancer Res ; 21(1): 51-61, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36112348

RESUMEN

Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. IMPLICATIONS: These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Masculino , Humanos , Proteómica , Neoplasias de la Próstata/metabolismo , Próstata/patología , Glucólisis , Fosforilación Oxidativa , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
7.
Nat Commun ; 13(1): 2801, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589701

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Glutamina/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Linfocitos T/metabolismo
8.
Br J Cancer ; 127(5): 937-947, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35618788

RESUMEN

BACKGROUND: We evaluated the therapeutic potential of combining the monocarboxylate transporter 1 (MCT1) inhibitor AZD3965 with the mitochondrial respiratory Complex I inhibitor IACS-010759, for the treatment of diffuse large B-cell lymphoma (DLBCL), a potential clinically actionable strategy to target tumour metabolism. METHODS: AZD3965 and IACS-010759 sensitivity were determined in DLBCL cell lines and tumour xenograft models. Lactate concentrations, oxygen consumption rate and metabolomics were examined as mechanistic endpoints. In vivo plasma concentrations of IACS-010759 in mice were determined by LC-MS to select a dose that reflected clinically attainable concentrations. RESULTS: In vitro, the combination of AZD3965 and IACS-010759 is synergistic and induces DLBCL cell death, whereas monotherapy treatments induce a cytostatic response. Significant anti-tumour activity was evident in Toledo and Farage models when the two inhibitors were administered concurrently despite limited or no effect on the growth of DLBCL xenografts as monotherapies. CONCLUSIONS: This is the first study to examine a combination of two distinct approaches to targeting tumour metabolism in DLBCL xenografts. Whilst nanomolar concentrations of either AZD3965 or IACS-010759 monotherapy demonstrate anti-proliferative activity against DLBCL cell lines in vitro, appreciable clinical activity in DLBCL patients may only be realised through their combined use.


Asunto(s)
Linfoma de Células B Grandes Difuso , Simportadores , Animales , Apoptosis , Línea Celular Tumoral , Glucólisis , Humanos , Linfoma de Células B Grandes Difuso/patología , Ratones , Transportadores de Ácidos Monocarboxílicos , Fosforilación Oxidativa , Simportadores/metabolismo
9.
BMC Cancer ; 22(1): 174, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172762

RESUMEN

BACKGROUND: Both modified FOLFIRINOX (mFFX) and gemcitabine/nab-paclitaxel chemotherapy regimens have been shown to improve clinical outcomes in patients with pancreatic cancer, and are often used interchangeably as the standard of care. Preclinical studies often do not use these regimens, since administering these multiagent approaches can be difficult. In this study, we assessed the feasibility of administering these two chemotherapy regimens in spontaneous pancreatic tumors using KPC mice with the ultimate goal of advancing preclinical studies. METHODS: KPC mice were created by breeding KrasLSL-G12D/+ to Trp53fl/fl;Ptf1αCre/+, resulting in KrasLSL-G12D/+;p53fl/+;Ptf1αCre/+ mice. At 14 weeks of age, mice were palpated for spontaneous tumor growth that was verified using ultrasounds. Mice with tumors under 15 mm in diameter were used. The mice were assigned to one of seven treatment regimens: 1 cycle of mFFX (FFX X1), 2 cycles of mFFX (FFX X2), 1 cycle of mFFXwith 40 Gy SBRT (FFX SBRT), 1 cycle of gemcitabine/nab-paclitaxel (GEM/AB X1), 2 cycles of gemcitabine/nab-paclitaxel (GEM/AB X2), 2 cycles of gemcitabine/nab-paclitaxel with 40 Gy SBRT (GEM/AB SBRT), or saline only (control). RESULTS: In total, 92 mice were included. The median OS in the FFX X2 group was slightly longer that the median OS in the FFX X1 group (15 days vs 11 days, P = 0.003). Mice in the GEM/AB X2 group had longer OS when compared to mice in the GEM/AB X1 group (33.5 vs 13 days, P = 0.001). Mice treated with chemotherapy survived longer than untreated control animals (median OS: 6.5 days, P < 0.001). Moreover, in mice treated with chemotherapy, mice that received 2 cycles of GEM/AB X2 had the longest survival, while the FFX X1 group had the poorest OS (P < 0.001). The addition of chemotherapy was associated with reduced number of myeloid and lymphoid cell types, except for CD4 + cells whose levels were largely unaltered only in tumors treated with gemcitabine/nab-paclitaxel. Lastly, chemotherapy followed by consolidative SBRT trended towards increased local control and survival. CONCLUSIONS: We demonstrate the utility and feasibility of clinically relevant mFOLFIRINOX and gemcitabine/nab-paclitaxel in preclinical models of pancreatic cancer.


Asunto(s)
Albúminas/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Desoxicitidina/análogos & derivados , Modelos Animales de Enfermedad , Paclitaxel/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Desoxicitidina/administración & dosificación , Estudios de Factibilidad , Fluorouracilo/administración & dosificación , Humanos , Irinotecán/administración & dosificación , Leucovorina/administración & dosificación , Ratones , Oxaliplatino/administración & dosificación , Gemcitabina
10.
Cancer Res ; 82(7): 1423-1434, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35131872

RESUMEN

Ovarian cancer is the deadliest gynecologic cancer, and novel therapeutic options are crucial to improve overall survival. Here we provide evidence that impairment of oxidative phosphorylation (OXPHOS) can help control ovarian cancer progression, and this benefit correlates with expression of the two mitochondrial master regulators PGC1α and PGC1ß. In orthotopic patient-derived ovarian cancer xenografts (OC-PDX), concomitant high expression of PGC1α and PGC1ß (PGC1α/ß) fostered a unique transcriptional signature, leading to increased mitochondrial abundance, enhanced tricarboxylic acid cycling, and elevated cellular respiration that ultimately conferred vulnerability to OXPHOS inhibition. Treatment with the respiratory chain complex I inhibitor IACS-010759 caused mitochondrial swelling and ATP depletion that consequently delayed malignant progression and prolonged the lifespan of high PGC1α/ß-expressing OC-PDX-bearing mice. Conversely, low PGC1α/ß OC-PDXs were not affected by IACS-010759, thus pinpointing a selective antitumor effect of OXPHOS inhibition. The clinical relevance of these findings was substantiated by analysis of ovarian cancer patient datasets, which showed that 25% of all cases displayed high PGC1α/ß expression along with an activated mitochondrial gene program. This study endorses the use of OXPHOS inhibitors to manage ovarian cancer and identifies the high expression of both PGC1α and ß as biomarkers to refine the selection of patients likely to benefit most from this therapy. SIGNIFICANCE: OXPHOS inhibition in ovarian cancer can exploit the metabolic vulnerabilities conferred by high PGC1α/ß expression and offers an effective approach to manage patients on the basis of PGC1α/ß expression.


Asunto(s)
Neoplasias Ováricas , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas de Unión al ARN , Animales , Femenino , Humanos , Ratones , Mitocondrias/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas de Unión al ARN/metabolismo
11.
Mol Oncol ; 16(5): 1132-1152, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34632715

RESUMEN

Multiple molecular features, such as activation of specific oncogenes (e.g., MYC, BCL2) or a variety of gene expression signatures, have been associated with disease course in diffuse large B-cell lymphoma (DLBCL), although their relationships and implications for targeted therapy remain to be fully unraveled. We report that MYC activity is closely correlated with-and most likely a driver of-gene signatures related to oxidative phosphorylation (OxPhos) in DLBCL, pointing to OxPhos enzymes, in particular mitochondrial electron transport chain (ETC) complexes, as possible therapeutic targets in high-grade MYC-associated lymphomas. In our experiments, indeed, MYC sensitized B cells to the ETC complex I inhibitor IACS-010759. Mechanistically, IACS-010759 triggered the integrated stress response (ISR) pathway, driven by the transcription factors ATF4 and CHOP, which engaged the intrinsic apoptosis pathway and lowered the apoptotic threshold in MYC-overexpressing cells. In line with these findings, the BCL2-inhibitory compound venetoclax synergized with IACS-010759 against double-hit lymphoma (DHL), a high-grade malignancy with concurrent activation of MYC and BCL2. In BCL2-negative lymphoma cells, instead, killing by IACS-010759 was potentiated by the Mcl-1 inhibitor S63845. Thus, combining an OxPhos inhibitor with select BH3-mimetic drugs provides a novel therapeutic principle against aggressive, MYC-associated DLBCL variants.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-myc , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Oncogenes , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Respiración
12.
Oncoimmunology ; 10(1): 1992880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777916

RESUMEN

Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses. Based on evidence from our group and others, these therapies appear synergistic, but at the cost of significant toxicity. We know from other treatment paradigms (e.g. hematologic malignancies) that combination strategies with multi-drug regimens (>4 drugs) are associated with more durable disease control. To better understand the mechanism of these improved outcomes, and to identify and prioritize new strategies for testing, we studied several multi-drug regimens combining BRAF/MEK targeted therapy and immunotherapy combinations in a Braf-mutant murine melanoma model (BrafV600E/Pten-/- ). Short-term treatment with α-PD-1 and α-CTLA-4 monotherapies were relatively ineffective, while treatment with α-OX40 demonstrated some efficacy [17% of mice with no evidence of disease, (NED), at 60-days]. Outcomes were improved in the combined α-OX40/α-PD-1 group (42% NED). Short-term treatment with quadruplet therapy of immunotherapy doublets in combination with targeted therapy [dabrafenib and trametinib (DT)] was associated with excellent tumor control, with 100% of mice having NED after combined DT/α-CTLA-4/α-PD-1 or DT/α-OX40/α-PD-1. Notably, tumors from mice in these groups demonstrated a high proportion of effector memory T cells, and immunologic memory was maintained with tumor re-challenge. Together, these data provide important evidence regarding the potential utility of multi-drug therapy in treating advanced melanoma and suggest these models can be used to guide and prioritize combinatorial treatment strategies.


Asunto(s)
Melanoma , Preparaciones Farmacéuticas , Animales , Humanos , Inmunoterapia , Melanoma/tratamiento farmacológico , Melanoma/genética , Células T de Memoria , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Proto-Oncogénicas B-raf/genética
13.
J Med Chem ; 64(20): 15141-15169, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34643390

RESUMEN

Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) plays a role in receptor tyrosine kinase (RTK), neurofibromin-1 (NF-1), and Kirsten rat sarcoma virus (KRAS) mutant-driven cancers, as well as in RTK-mediated resistance, making the identification of small-molecule therapeutics that interfere with its function of high interest. Our quest to identify potent, orally bioavailable, and safe SHP2 inhibitors led to the discovery of a promising series of pyrazolopyrimidinones that displayed excellent potency but had a suboptimal in vivo pharmacokinetic (PK) profile. Hypothesis-driven scaffold optimization led us to a series of pyrazolopyrazines with excellent PK properties across species but a narrow human Ether-à-go-go-Related Gene (hERG) window. Subsequent optimization of properties led to the discovery of the pyrimidinone series, in which multiple members possessed excellent potency, optimal in vivo PK across species, and no off-target activities including no hERG liability up to 100 µM. Importantly, compound 30 (IACS-15414) potently suppressed the mitogen-activated protein kinase (MAPK) pathway signaling and tumor growth in RTK-activated and KRASmut xenograft models in vivo.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Humanos , Ratones , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Relación Estructura-Actividad
14.
Front Oncol ; 11: 686765, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490088

RESUMEN

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a high mortality rate and relapse risk. Although progress on the genetic and molecular understanding of this disease has been made, the standard of care has changed minimally for the past 40 years and the five-year survival rate remains poor, warranting new treatment strategies. Here, we applied a two-step screening platform consisting of a primary cell viability screening and a secondary metabolomics-based phenotypic screening to find synergistic drug combinations to treat AML. A novel synergy between the oxidative phosphorylation inhibitor IACS-010759 and the FMS-like tyrosine kinase 3 (FLT3) inhibitor AC220 (quizartinib) was discovered in AML and then validated by ATP bioluminescence and apoptosis assays. In-depth stable isotope tracer metabolic flux analysis revealed that IACS-010759 and AC220 synergistically reduced glucose and glutamine enrichment in glycolysis and the TCA cycle, leading to impaired energy production and de novo nucleotide biosynthesis. In summary, we identified a novel drug combination, AC220 and IACS-010759, which synergistically inhibits cell growth in AML cells due to a major disruption of cell metabolism, regardless of FLT3 mutation status.

15.
Cancer Res ; 81(21): 5572-5581, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518211

RESUMEN

Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX). On gene expression profiling, all of the sensitive models displayed a basal-like 1 TNBC subtype. Expression of mitochondrial genes was significantly higher in sensitive PDXs. An in vivo functional genomics screen to identify synthetic lethal targets in tumors treated with IACS-10759 found several potential targets, including CDK4. We validated the antitumor efficacy of the combination of palbociclib, a CDK4/6 inhibitor, and IACS-10759 in vitro and in vivo. In addition, the combination of IACS-10759 and multikinase inhibitor cabozantinib had improved antitumor efficacy. Taken together, our data suggest that OXPHOS is a metabolic vulnerability in TNBC that may be leveraged with novel therapeutics in combination regimens. SIGNIFICANCE: These findings suggest that triple-negative breast cancer is highly reliant on OXPHOS and that inhibiting OXPHOS may be a novel approach to enhance efficacy of several targeted therapies.


Asunto(s)
Anilidas/farmacología , Resistencia a Antineoplásicos , Metaboloma , Recurrencia Local de Neoplasia/tratamiento farmacológico , Oxadiazoles/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Piperidinas/farmacología , Piridinas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Apoptosis , Proliferación Celular , Quimioterapia Combinada , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Ratones , Ratones Desnudos , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Pronóstico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Clin Cancer Res ; 27(23): 6354-6365, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518313

RESUMEN

PURPOSE: On the basis of strong preclinical rationale, we sought to confirm recommended phase II dose (RP2D) for olaparib, a PARP inhibitor, combined with the AKT inhibitor capivasertib and assess molecular markers of response and resistance. PATIENTS AND METHODS: We performed a safety lead-in followed by expansion in endometrial, triple-negative breast, ovarian, fallopian tube, or peritoneal cancer. Olaparib 300 mg orally twice daily and capivasertib orally twice daily on a 4-day on 3-day off schedule was evaluated. Two dose levels (DL) of capivasertib were planned: 400 mg (DL1) and 320 mg (DL-1). Patients underwent biopsies at baseline and 28 days. RESULTS: A total of 38 patients were enrolled. Seven (18%) had germline BRCA1/2 mutations. The first 2 patients on DL1 experienced dose-limiting toxicities (DLT) of diarrhea and vomiting. No DLTs were observed on DL-1 (n = 6); therefore, DL1 was reexplored (n = 6) with no DLTs, confirming DL1 as RP2D. Most common treatment-related grade 3/4 adverse events were anemia (23.7%) and leukopenia (10.5%). Of 32 evaluable subjects, 6 (19%) had partial response (PR); PR rate was 44.4% in endometrial cancer. Seven (22%) additional patients had stable disease greater than 4 months. Tumor analysis demonstrated strong correlations between response and immune activity, cell-cycle alterations, and DNA damage response. Therapy resistance was associated with receptor tyrosine kinase and RAS-MAPK pathway activity, metabolism, and epigenetics. CONCLUSIONS: The combination of olaparib and capivasertib is associated to no serious adverse events and demonstrates durable activity in ovarian, endometrial, and breast cancers, with promising responses in endometrial cancer. Importantly, tumor samples acquired pre- and on-therapy can help predict patient benefit.


Asunto(s)
Neoplasias Ováricas , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas , Piperazinas , Pirimidinas , Pirroles , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
17.
Blood Adv ; 5(20): 4233-4255, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34507353

RESUMEN

Acute myeloid leukemia (AML) cells are highly dependent on oxidative phosphorylation (OxPhos) for survival, and they continually adapt to fluctuations in nutrient and oxygen availability in the bone marrow (BM) microenvironment. We investigated how the BM microenvironment affects the response to OxPhos inhibition in AML by using a novel complex I OxPhos inhibitor, IACS-010759. Cellular adhesion, growth, and apoptosis assays, along with measurements of expression of mitochondrial DNA and generation of mitochondrial reactive oxygen species indicated that direct interactions with BM stromal cells triggered compensatory activation of mitochondrial respiration and resistance to OxPhos inhibition in AML cells. Mechanistically, inhibition of OxPhos induced transfer of mitochondria derived from mesenchymal stem cells (MSCs) to AML cells via tunneling nanotubes under direct-contact coculture conditions. Inhibition of OxPhos also induced mitochondrial fission and increased functional mitochondria and mitophagy in AML cells. Mitochondrial fission is known to enhance cell migration, so we used electron microscopy to observe mitochondrial transport to the leading edge of protrusions of AML cells migrating toward MSCs. We further demonstrated that cytarabine, a commonly used antileukemia agent, increased mitochondrial transfer of MSCs to AML cells triggered by OxPhos inhibition. Our findings indicate an important role of exogenous mitochondrial trafficking from BM stromal cells to AML cells as well as endogenous mitochondrial fission and mitophagy in the compensatory adaptation of leukemia cells to energetic stress in the BM microenvironment.


Asunto(s)
Leucemia Mieloide Aguda , Fosforilación Oxidativa , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Oxadiazoles , Piperidinas , Microambiente Tumoral
18.
Blood Adv ; 5(16): 3134-3146, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34424317

RESUMEN

Although ibrutinib improves the overall survival of patients with chronic lymphocytic leukemia (CLL), some patients still develop resistance, most commonly through point mutations affecting cysteine residue 481 (C481) in Bruton's tyrosine kinase (BTKC481S and BTKC481R). To enhance our understanding of the biological impact of these mutations, we established cell lines that overexpress wild-type or mutant BTK in in vitro and in vivo models that mimic ibrutinib-sensitive and -resistant CLL. MEC-1 cell lines stably overexpressing wild-type or mutant BTK were generated. All cell lines coexpressed GFP, were CD19+ and CD23+, and overexpressed BTK. Overexpression of wild-type or mutant BTK resulted in increased signaling, as evidenced by the induction of p-BTK, p-PLCγ2, and p-extracellular signal-related kinase (ERK) levels, the latter further augmented upon IgM stimulation. In all cell lines, cell cycle profiles and levels of BTK expression were similar, but the RNA sequencing and reverse-phase protein array results revealed that the molecular transcript and protein profiles were distinct. To mimic aggressive CLL, we created xenograft mouse models by transplanting the generated cell lines into Rag2-/-γc-/- mice. Spleens, livers, bone marrow, and peripheral blood were collected. All mice developed CLL-like disease with systemic involvement (engraftment efficiency, 100%). We observed splenomegaly, accumulation of leukemic cells in the spleen and liver, and macroscopically evident necrosis. CD19+ cells accumulated in the spleen, bone marrow, and peripheral blood. The overall survival duration was slightly lower in mice expressing mutant BTK. Our cell lines and murine models mimicking ibrutinib-resistant CLL will serve as powerful tools to test reversible BTK inhibitors and novel, non-BTK-targeted therapeutics.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Animales , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Ratones , Piperidinas , Pirazoles/farmacología , Pirimidinas/farmacología
19.
Nat Commun ; 12(1): 4626, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330913

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance. Genetic and pharmacological studies validate the role of PRMT1 in maintaining PDAC growth. Mechanistically, using proteomic and transcriptomic analyses, we demonstrate that global inhibition of asymmetric arginine methylation impairs RNA metabolism, which includes RNA splicing, alternative polyadenylation, and transcription termination. This triggers a robust downregulation of multiple pathways involved in the DNA damage response, thereby promoting genomic instability and inhibiting tumor growth. Taken together, our data support PRMT1 as a compelling target in PDAC and informs a mechanism-based translational strategy for future therapeutic development.Statement of significancePDAC is a highly lethal cancer with limited therapeutic options. This study identified and characterized PRMT1-dependent regulation of RNA metabolism and coordination of key cellular processes required for PDAC tumor growth, defining a mechanism-based translational hypothesis for PRMT1 inhibitors.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Daño del ADN , Neoplasias Pancreáticas/genética , Proteína-Arginina N-Metiltransferasas/genética , ARN/genética , Proteínas Represoras/genética , Animales , Biocatálisis/efectos de los fármacos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/prevención & control , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Inhibidores Enzimáticos/farmacología , Femenino , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/prevención & control , Proteína-Arginina N-Metiltransferasas/metabolismo , ARN/metabolismo , Interferencia de ARN , Proteínas Represoras/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
20.
J Med Chem ; 64(15): 11302-11329, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34292726

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 (62) and IACS-70465 (71). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...